关于举办美国哥伦比亚大学Huiming Yin教授学术讲座的通知

发布时间:2021-07-13设置

报告题目:针对可持续基础设施能量管理的先进材料系统虚拟仿真

报告时间:202171611:0012:00

报告地点:腾讯会议 ID42265298356 (若300人满请入直播间)

腾讯直播间:https://meeting.tencent.com/l/QALGLWoVMAcS

报 告 人:Huiming Yin教授(哥伦比亚大学)

Yin教授官方主页:https://www.engineering.columbia.edu/faculty/huiming-yin

欢迎广大师生参加。

  

  

土木与交通学院

2021713

  

  

报告人简介:

Huiming Yin教授于1995年在中国河海大学获得学士学位,1998年在北京大学获得硕士学位,并于2004年在美国爱荷华大学获得博士学位。随后,他在加州交通运输局萨克拉门托交通实验室任工程师两年,并在美国伊利诺伊大学厄巴纳-香槟分校UIUC土木与环境工程系从事博士后研究两年。Yin老师于2008年加入美国哥伦比亚大学土木工程与工程力学系,研究方向是土木工程材料的多物理及力学表征和建模及其在节能基础设施系统中的应用。他于2010年获得NSF CAREER奖。他创立了the Pao Sustainable Engineering and Materials Laboratory,并担任NSF IUCRC能量收集材料和系统中心的哥伦比亚站点主任。更多详情请参阅:https://www.engineering.columbia.edu/faculty/huiming-yin

Dr. Huiming Yin received his Bachelor degree from the Hohai University, China, in 1995, Master degree from the Peking University, China, in 1998, and PhD degree from The Iowa University in 2004. Before joining Columbia University in 2008, Dr. Yin was employed by Caltrans as a Civil Engineer in the Transportation Laboratory at Sacramento, California, for two years and by University of Illinois at Urbana-Champaign as a Post-Doctoral Research Associate in the Department of Civil and Environmental Engineering for two years. Dr. Yins research focuses on the multiphysical and mechanical characterization and modeling of civil engineering materials and their applications in energy efficient infrastructure systems.  He received the NSF CAREER Award in 2010. He founded the Pao Sustainable Engineering and Materials Laboratory and serves the Columbia Site Director of NSF IUCRC Center for Energy Harvesting Materials and Systems.

  

报告摘要:

随着纳米技术、增材制造和微型化的进步,我们可以观察、设计和控制从纳米到千米尺度的材料行为。在这些规模的材料准备和测试中,通常需要多次反复试验和多种技能或经验才能获得有意义的结果。此外,另一个具有挑战性的任务是使用计算机解释、分析和理解由于人为因素引起的随机性和测试错误导致的测试结果。

虚拟实验可以在具有受控物理参数的计算机上重现物理实验,用于材料发现、建模和预测,以及材料微观结构实现和材料行为多物理建模的高保真算法。已经开发了The inclusion-based boundary element method  (iBEM)来模拟复合材料在实际载荷条件下具有实际微观结构的多尺度/物理行为。我们最近的工作将其扩展到具有任意形状的粒子系统,这使得能够对实际材料样本进行虚拟实验,并根据较低尺度的材料特性预测有效的材料行为。基本理解已被整合到计算机辅助设计和制造先进材料系统中,以提高能源收集和可持续基础设施效率。

With the advancement of nanotechnology, additive manufacture, and miniaturization, we can observe, design and control material behavior across scales from nanometers to kilometers. In the material preparation and testing at these scales, it often requires many trial and error iterations and versatile skills or experience to obtain meaningful results. In addition, another challenging task is to interpret, analyze and understand the test results due to the randomness nature and test errors, which is commonly introduced by human factors and can be avoided by computers.

Virtual experiments can reproduce the physical experiments on a computer with the controlled physical parameters for material discovery, modeling, and prediction with high fidelity algorithms on microstructural realizations of materials and multiphysical modeling of material behavior. The inclusion-based boundary element method (iBEM) has been developed to simulate the multi-scale/physical behavior of composite materials with an actual microstructure under real loading condition. Our recent work extended it to particle systems with arbitrary shapes, which enables virtual experiments with actual material samples and predict the effective material behavior from material properties at lower scales. The fundamental understanding has been integrated into computer-aided design and manufacture of advanced material systems for energy harvesting and efficiency in sustainable infrastructure.


返回原图
/